

2025 Annual Drinking Water System Summary Report

Oxford South Drinking Water System

1. GENERAL INFORMATION

Oxford County (the County) prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail information required for Annual Reports and Summary Reports under Ontario Regulation (O. Reg.) 170/03 of the *Safe Drinking Water Act*, 2002 including the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the County website at www.oxfordcounty.ca/services-for-you/water-wastewater/drinking-water/ or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report, please contact the County at the address and phone number listed below or by email at water@oxfordcounty.ca.

Drinking Water System:

Oxford South Drinking Water System

Drinking Water System Number:

220000601

Reporting Period:

January 1, 2025 – December 31, 2025

Drinking Water System Owner & Contact Information:

Oxford County Public Works Department - Water Services

P.O. Box 1614

21 Reeve Street

Woodstock, ON N4S 7Y3

Telephone: 519-539-9800

Toll Free: 866-537-7778

Email: water@oxfordcounty.ca

1.1 System Description

The Oxford South Drinking Water System (DWS) is a large municipal residential water system as defined by O. Reg. 170/03 and serves a population of approximately 6,620 people. Transmission watermains interconnect the communities of Otterville, Springfield, and Norwich.

The system consists of seven secure groundwater wells and four Water Treatment Facilities (WTFs) as follows:

<i>Treatment Facility</i>	<i>Location</i>	<i>Wells</i>	<i>Treatment</i>
Pitcher Street	Norwich	N2 and N5	Filtration for iron, manganese and arsenic removal and disinfection with sodium hypochlorite
Main Street	Norwich	N4	Iron sequestering with sodium silicate and disinfection with sodium hypochlorite
Otterville	Otterville	O3 and O4	Disinfection with sodium hypochlorite
Springfield	Springfield	S4 and S5	Disinfection with sodium hypochlorite

The treatment facilities each house high lift pumps, and monitoring and treatment equipment for the supply wells. There is an 1,818 m³ water tower in Norwich and a 1,440 m³ water tower in Otterville which provide storage and maintain pressure in the system.

In 2025, approximately 18,680 L of sodium hypochlorite and 4,640 kg of sodium silicate were used in the water treatment process. These chemicals are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

Standby generators are available at Norwich Pitcher Street and Otterville to run the facilities in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by O. Reg. 170/03. Alarms automatically notify operators in the event of failure of critical operational requirements. The Oxford South DWS does not supply drinking water to any other drinking water systems. A bulk water station is located at 6 Pitcher Street in Norwich.

1.2 Major Expenses

Planning for major drinking water system expenses is included within Oxford County's Water Services Master Plan and managed according to our Asset Management and Capital Replacement Program.

The Oxford South Drinking Water System is one of 14 water systems with revenues and expenses pooled for economy-of-scale purposes. The systems are combined into the Township Water financial system and in 2025 had a forecasted operating and maintenance expenditures of approximately \$4,370,000.

In addition to regular operational and maintenance expenditures, Capital Improvement Projects for the Townships systems were forecasted to be \$2,500,000 for improvements to water treatment systems and replacement of distribution mains in the Township System.

Township Capital Improvement Projects included:

- \$530,000 repair and maintenance on wells, water pump stations, and water treatment facilities;
- \$190,000 for distribution replacements;
- \$50,000 for the installation of multi-level monitoring wells for ground water quality monitoring in Otterville; and
- \$50,000 for facilities improvements.

Capital Improvement projects for all systems included:

- \$1,577,000 to implement a Countywide SCADA Master Plan for all water systems.

2. MICROBIOLOGICAL TESTING

2.1 *E. coli* and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly from the raw and treated water at the facility and from the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above the Maximum Allowable Concentration (MAC) of 0 colonies per 100 mL in treated water samples must be reported to the Ministry of Environment, Conservation and Parks (MECP) and the Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the annual sampling program are shown in the following table. There were three adverse test results from 366 treated water samples taken in 2025. The corrective action for which is summarized in section 6.2.

Source	Number of Samples	Range of <i>E. coli</i> Min - Max MAC = 0 (colonies / 100 mL)	Range of Total Coliform Min - Max MAC = 0 (colonies / 100 mL)
Raw	219	0	0
Treated	135	0 - NDOGN*	0 - NDOGN*
Distribution	231	0 - NDOGN*	0 - NDOGN*

*No Data, Overgrown Non-target bacteria (NDOGN) occurs when the total coliform/*E. Coli* plate is overgrown with non-target bacteria.

2.2 Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over

500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. Annual results are shown in the following table:

Source	Number of Samples	Range of HPC Min – Max (colonies / mL)
Treated	135	0 – 20*
Distribution	60	0 – OG**

* HPC results for three treated samples analyzed on the same day were unavailable due to laboratory contamination.

**OG results are where the plate becomes overgrown such that the individual colonies cannot be counted.

3. CHEMICAL TESTING

The *Safe Drinking Water Act*, 2002 requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix 'A'. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by O. Reg. 170/03. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix 'A'. Additional information on common chemical parameters specific to the Oxford South DWS is provided below.

3.1 Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, sodium will not impair the taste of the water. The latest test results are provided in Appendix 'A'.

When sodium levels are above 20 mg/L the MECP and the MOH are notified. Southwestern Public Health maintains an information page on sodium in drinking water at <https://www.swpublichealth.ca/news/posts/public-health-issues-annual-reminder-about-fluoride-and-sodium-in-oxford-drinking-water/> in order to help people on sodium restricted diets monitor their sodium intake.

3.2 Fluoride

Oxford County does not add fluoride to the water at any of its drinking water systems though naturally occurring concentrations of fluoride may be present in some systems. Fluoride levels are sampled once every five years. The latest test results are provided in Appendix 'A'.

Fluoride levels under 2.4 mg/L are considered safe for consumption however at levels between 1.5 and 2.4 mg/L fluoride may cause dental fluorosis in children. When fluoride levels above 1.5 mg/L the MECP and the MOH are notified. Further information on fluoride can be found on the Southwestern Public Health web page at <https://www.swpublichealth.ca/news/posts/public-health-issues-annual-reminder-about-fluoride-and-sodium-in-oxford-drinking-water/>.

3.3 Hardness, Iron, and Manganese

These are aesthetic parameters that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help residents set the water softener at the level recommended by the manufacturer. Samples for hardness are collected at a minimum every three years from raw or treated water. The hardness for the Oxford South system varies based on the wells being used. The range of hardness in Norwich is 276 - 288 mg/L (16 - 17 grains/gallon) and in Otterville and Springford is 90 - 299 mg/L (5 - 17 grains/gallon) based on an historical running average and operational conditions.

Iron levels less than 0.30 mg/L are not considered to cause aesthetic problems such as discoloured water.

- Iron is less than 0.09 mg/L at the Otterville water treatment facility and the Springford water treatment facility.
- Iron is removed by filtration at the Norwich Pitcher St. facility and the average iron level in 2025 was 0.04 mg/L.
- Iron is kept in solution at the Norwich Main St. water treatment facility by addition of sodium silicate. The average iron level at the Norwich Main St. facility over the last four years was 0.41mg/L.

Manganese is commonly found in conjunction with iron and causes discoloured water. Currently, levels of manganese under 0.05 mg/L are not considered to cause aesthetic issues. However, a new aesthetic objective of 0.02 mg/L has been proposed though not yet take effect.

- Manganese is less than 0.02mg/L at the Otterville facility and Norwich Pitcher Street facility;
- The latest result for Springford facility manganese is 0.03mg/L; and
- The average manganese level at the Norwich Main St. facility over the last four years was 0.03mg/L.

3.4 Required Additional Testing

Under O. Reg. 170/03, additional quarterly sampling is required when a parameter listed in Schedule 23 or 24 exceeds half of the MAC. Raw water from well N2 and N5 is

successfully treated by filtration to below the MAC for arsenic. Though not required, the County still takes additional samples to confirm filter efficiency for arsenic removal. Springford treated water exceeds the half MAC for arsenic (10 µg/L). Quarterly test results are summarized in Appendix 'A'.

No additional testing requirements are listed in the Municipal Drinking Water Licence.

4. OPERATIONAL MONITORING

4.1 Chlorine Residual

Free chlorine levels of the treated water are continuously monitored at the discharge point of the WTF and in the distribution system. Distribution system free chlorine residuals are also checked weekly at various locations during sampling. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. A summary of the chlorine residual readings is provided in the table below. There were no reportable incidents in 2025.

4.2 Turbidity

Turbidity of treated water is continuously monitored at the treatment facility as a change in turbidity can indicate an operational problem. As a minimum, turbidity for each well is required to be tested monthly. Turbidity is measured in nephelometric turbidity units (NTU). Under O. Reg. 170/03 turbidity in groundwater from a secure well or a well with effective in-situ filtration is not reportable, however, turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the annual monitoring results is provided in the following table:

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Norwich Main St. E WTF		
Chlorine residual after treatment (mg/L)	Continuous	(0.29 - 2.07) 1.29
Well N4 turbidity before treatment (NTU)	47	(0.14 - 1.81) 0.63
Turbidity after treatment (NTU)	Continuous	(0.05 – 4.00) 0.11
Norwich Pitcher St. WTF		
Chlorine residual after treatment (mg/L)	Continuous	(0.19 – 4.00) 1.14
Well N2 turbidity before treatment (NTU)	52	(0.18 - 2.01) 0.57
Well N5 turbidity before treatment (NTU)	52	(0.15 - 2.55) 0.82
Turbidity after treatment (NTU)	Continuous	(0.03 – 4.00) 0.11
Otterville WTF		
Chlorine residual after treatment (mg/L)	Continuous	Offline in 2025
Well O3 turbidity before treatment (NTU)	NA	Offline in 2025
Well O4 turbidity before treatment (NTU)	NA	Offline in 2025
Turbidity after treatment (NTU)	Continuous	Offline in 2025
Springford WTF **		
Chlorine residual after treatment (mg/L)	Continuous	(0.47 - 2.90) 1.36

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Well S4 turbidity before treatment (NTU)	32	(0.15 - 1.88) 0.59
Well S5 turbidity before treatment (NTU)	32	(0.11 - 1.06) 0.38
Turbidity after treatment (NTU)	Continuous	(0.05 - 4.00) 0.22
Distribution System		
Chlorine residual in distribution (mg/L)	Continuous	(0.12- 3.83) 1.08

** Springford was offline from July 18 to November 5, 2025.

5. WATER QUANTITY

Continuous monitoring of flow rates from supply wells into the treatment system and from the WTF into the distribution system is required by O. Reg. 170/03. The Permit to Take Water (PTTW) and Municipal Drinking Water License (MDWL) issued by the MECP regulate the amount of water that can be utilized over a given time period. Terms used to evaluate capacity and current values for the Ingersoll DWS are provided in the following table:

Capacity Term	Description	Capacity (m ³ /day)
Supply Capacity	The limiting capacity of either the PTTW or MDWL.	6,054
Dynamic Supply Capacity	Accounts for any current constraints on the water supply (such as offline wells, reduced well capacity, water quality considerations).	4,423
Firm Capacity	Firm Capacity is defined as the removal of the highest producing well in an emergency or operational / maintenance situation with the ability to transport a maximum of 100 m ³ /day to maintain system integrity if appropriate.	3,764
Dynamic Firm Capacity	Considers the removal of the largest production well and other current system constraints. Trucked in water may be considered for some systems.	2,134

This system consists of seven supply wells. When looking at the Firm Capacity only the highest producing well, Norwich Well 4, is removed. However, under the Dynamic Capacity scenarios both Otterville wells and both Springford wells are removed.

The Springford wells are frequently offline in the warmer months and not a reliable supply.

The Otterville wells remained out of service in 2024 and 2025 as nitrate levels continue to exceed what can be managed through existing blending practices. Additional ground water monitoring began in 2025, and the County will investigate the future use of these wells as part of a long-term water supply strategy in 2026.

A summary comparing flows in 2025 to current capacities is provided in the following table and presented graphically in Appendix 'B'.

Flow Summary	Supply Capacity (m ³ /day)	Dynamic Supply Capacity (m ³ /day)	Max Daily Flow (m ³ /day)	Average Daily Flow (m ³ /day)	Average Monthly Flow (m ³ /month)	Total Yearly Flow (m ³ /year)
Springford WTF	321	0	172	74	2,259	27,112
Otterville WTF	1,310	0			Offline in 2025	
Norwich Main St. WTF	2,289	2,289	1,170	398	12,105	145,262
Norwich Pitcher St. WTF	2,134	2,134	1,811	811	24,677	296,127
Oxford South DWS <small>*Values may not sum</small>	6,054	4,423	2,637	1,284	39,042	468,501

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results, and the associated corrective actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1 Non-Compliance Findings

At the time this report was drafted, the 2025 annual MECP inspection for the Oxford South DWS had not been finalized.

6.2 Adverse Results

Any adverse bacteriological or chemical results or observations of operational conditions that may indicate adverse water quality are reported as required and corrective actions are taken. There were three adverse water quality incidents in 2025.

- Oxford South (3 day) - A bacteriological sample taken from the Norwich Pitcher Street Water Treatment Facility on June 2, 2025, returned NDOGN (no data, overgrown with non-target bacteria). The results were promptly reported to the MECP and the MOH. A precautionary Boil Water Advisory (BWA) was issued impacting users in Norwich, Otterville and Springford that are connected to the municipal water system. The distribution system was flushed, and free chlorine residuals were found to be within acceptable levels. Additionally, two rounds of bacteriological samples were collected at the Norwich Pitcher Street Water Treatment Facility, an upstream, and a downstream location. All sample results returned satisfactory.

Since this incident, the County and Southwestern Public Health reviewed and enhanced their response procedures for adverse water quality results including improvements to

notification processes for Boil Water Advisories and the approach to managing future adverse bacteriological results.

- Results for a bacteriological sample taken from the Springford Sample Station on July 7, 2025, returned NDOGN (no data, overgrown with non-target bacteria). The results were promptly reported to the MECP and the MOH. The distribution system was flushed, and free chlorine residuals were found to be within acceptable levels. Additionally, two rounds of bacteriological samples were collected at the Springford Sample Station, an upstream, and a downstream location. All sample results returned satisfactory.
- A bacteriological sample taken from the Norwich Main Street Water Treatment Facility on August 11, 2025, was found to have 1 CFU/100ml *E. coli* and 1 CFU/100 mL Total coliforms. The results were promptly reported to the MECP and the MOH. The distribution system was flushed, and free chlorine residuals were found to be within acceptable levels. Additionally, two rounds of bacteriological samples were collected at the Norwich Main Street Water Treatment Facility and two downstream locations. All sample results returned satisfactory.

APPENDIX 'A': SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing the County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document PSIB 4449e01 titled “Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines” available at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf.

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (µg/L) where 1 mg/L is equal to 1000 µg/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of “ND” stands for “Not Detected” and means that the concentration of the chemical is lower than the laboratory’s equipment is capable of measuring. In the event that some samples results are ND, and other results are above the MDL, the value of the MDL will be used in place of the ND where an average result must be calculated. Where all collected samples are ND the average sample result will be assumed to be ND.

Nitrate and nitrite samples are required every three months in normal operation.

Parameter	Number of Samples	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite					
Norwich Main St. WTF	4	ND	ND	1.0	0.003
Norwich Pitcher St. WTF	4	ND	ND	1.0	0.003
Otterville WTF		Offline in 2025		1.0	0.003
Springford WTF	4	ND	ND	1.0	0.003
Nitrate					
Norwich Main St. WTF	4	0.109 - 0.336	0.214	10.0	0.006
Norwich Pitcher St. WTF	4	ND	ND	10.0	0.006
Otterville WTF		Offline in 2025		10.0	0.006
Springford WTF	4	ND - 0.01	0.008	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every three months from the distribution system.

Parameter	Number of Samples	Annual Average (µg/L)	MAC (µg/L)	MDL (µg/L)
Trihalomethane (THM)	4	15.3	100	0.37
Haloacetic Acids (HAA)	4	ND	80	5.3

The following table summarizes the most recent test results for sodium and fluoride. Testing and reporting any adverse results are required every five years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium				
Norwich Main St. WTF	May 27, 2024	18.4	20.0*	0.01
Norwich Pitcher St. WTF	March 4, 2024	30.7	20.0*	0.01
Otterville WTF	Jun 10, 2024	27.8	20.0*	0.01
Springford WTF	May 30, 2022	52.5	20.0*	0.01
Fluoride				
Norwich Main St. WTF	Aug. 16, 2021	0.93	1.5**	0.006
Norwich Pitcher St. WTF	Aug 16, 2021	0.89	1.5**	0.006
Otterville WTF	April 24, 2021	0.08	1.5**	0.006
Springford WT	May 30, 2022	1.57	1.5**	0.006

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every three years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

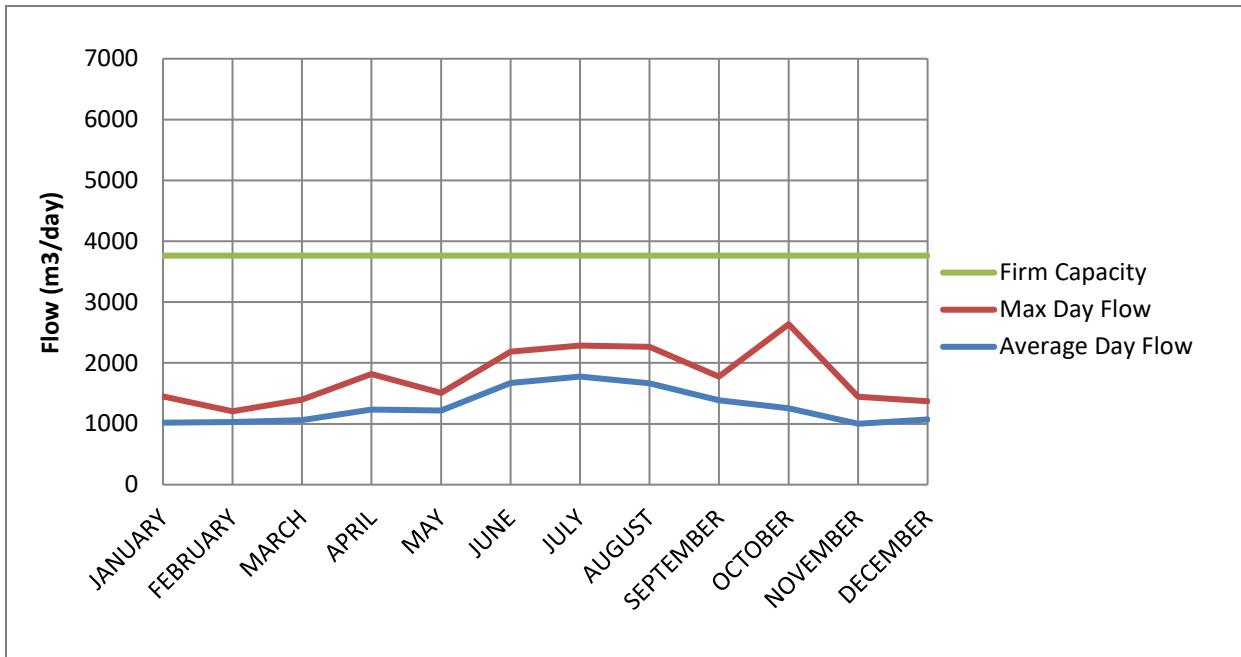
Parameter	Number of Samples	Result Range Min - Max	Acceptable Level
Distribution Alkalinity 2025	6	223 – 283 mg/L	30 – 500 mg/L
Distribution pH 2025	6	7.45 - 7.60	6.5 – 8.5
Distribution Lead 2024	6	0.05 - 0.65 µg/L	10 µg/L MAC

The following tables summarize the most recent test results for Schedule 23 parameters for each facility. Testing is required every three years for secure groundwater wells in large systems.

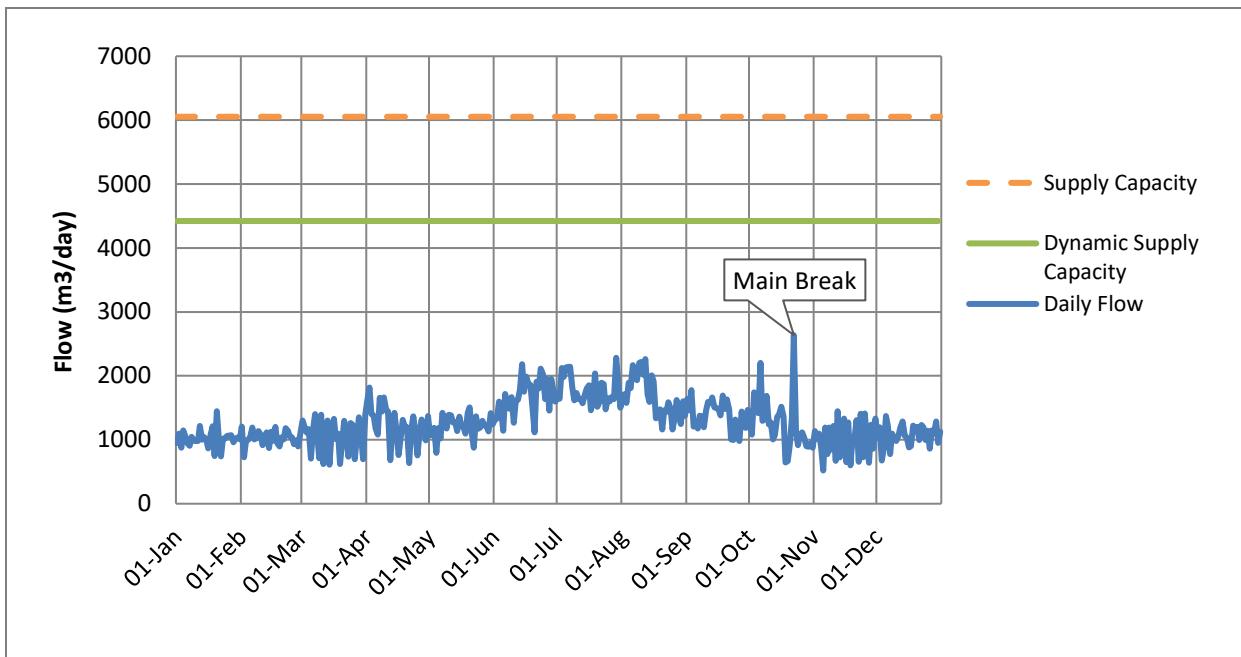
Parameter	Result Value (µg/L)				MAC (µg/L)	MDL (µg/L)
	Norwich Pitcher St. WTF Nov. 27, 2023	Norwich Main St. WTF Nov. 27, 2023	Otterville WTF + May 30, 2022	Springford WTF May 29, 2023		
Antimony	ND	ND	ND	ND	6	0.6
Arsenic	*	1.4	0.3	*	10	0.2
Barium	174	208	33	102	1000	0.02
Boron	86	60	42	207	5000	2
Cadmium	ND	0.005	0.010	ND	5	0.003
Chromium	0.17	0.10	0.72	0.16	50	0.08
Mercury	ND	ND	ND	ND	1	0.01
Selenium	ND	0.09	0.37	0.05	50	0.04
Uranium	0.084	0.329	0.554	0.053	20	0.002

+ Otterville WTF offline in 2025

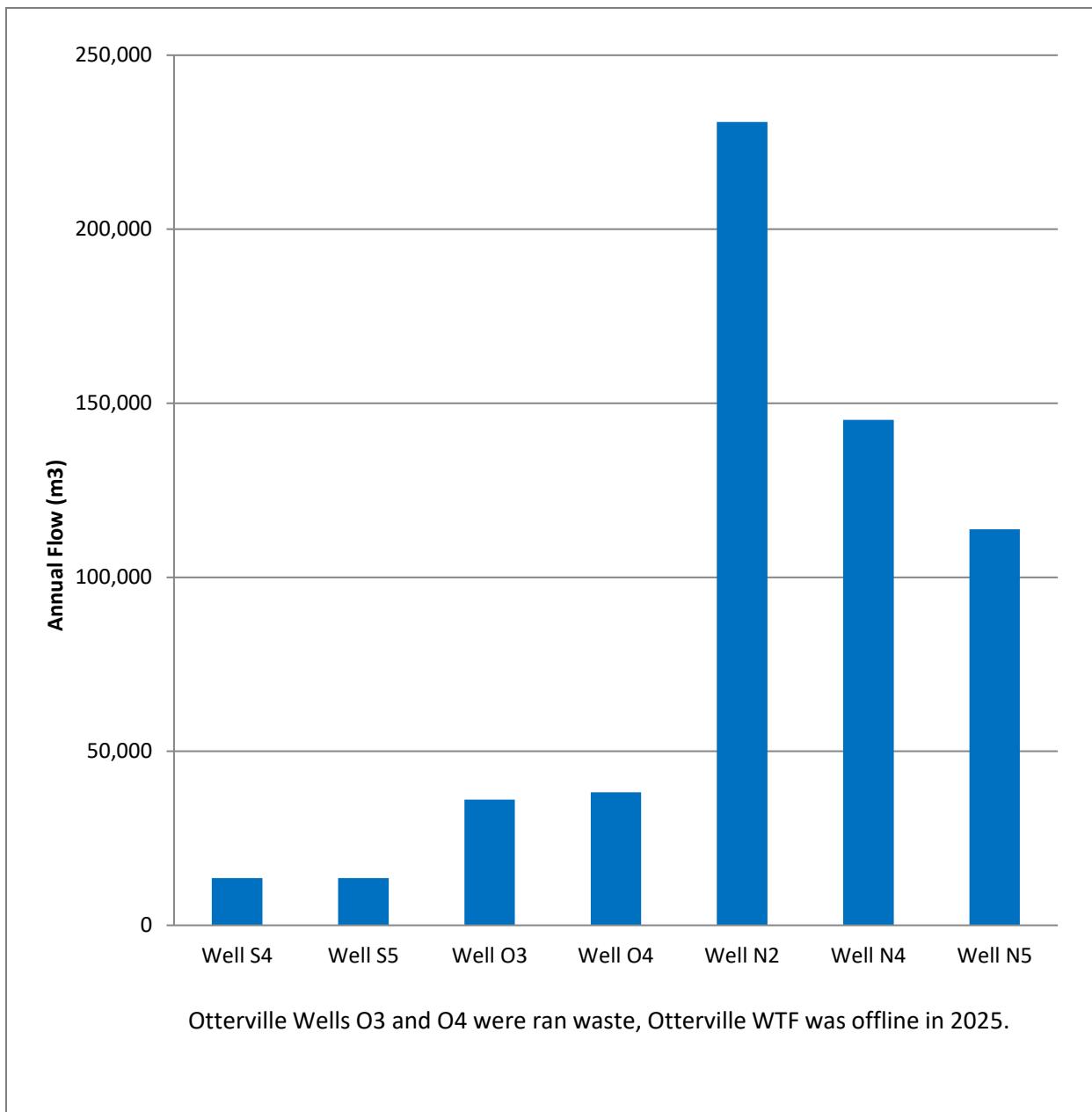
*Annual average of all samples collected in 2025


The following table summarizes the most recent test results for Schedule 24 parameters. Testing is required every three years for secure groundwater wells in large systems.

Parameter	Results ($\mu\text{g/L}$) Norwich Pitcher St. WTF Nov.27, 2023	Results ($\mu\text{g/L}$) Norwich Main St. WTF Nov.27, 2023	Results ($\mu\text{g/L}$) Otterville WTF + June 10, 2024	Results ($\mu\text{g/L}$) Springford WTF May29, 2023	MAC ($\mu\text{g/L}$)	MDL ($\mu\text{g/L}$)
Alachlor	ND	ND	ND	ND	5	0.02
Atrazine + N-dealkylated metabolites	ND	ND	ND	ND	5	0.01
Azinphos-methyl	ND	ND	ND	ND	20	0.05
Benzene	ND	ND	ND	ND	1	0.32
Benzo(a)pyrene	ND	ND	ND	ND	0.01	0.004
Bromoxynil	ND	ND	ND	ND	5	0.33
Carbaryl	ND	ND	ND	ND	90	0.05
Carbofuran	ND	ND	ND	ND	90	0.01
Carbon Tetrachloride	ND	ND	ND	ND	2	0.17
Chlorpyrifos	ND	ND	ND	ND	90	0.02
Diazinon	ND	ND	ND	ND	20	0.02
Dicamba	ND	ND	ND	ND	120	0.20
1,2-Dichlorobenzene	ND	ND	ND	ND	200	0.41
1,4-Dichlorobenzene	ND	ND	ND	ND	5	0.36
1,2-Dichloroethane	ND	ND	ND	ND	5	0.35
1,1-Dichloroethylene (vinylidene chloride)	ND	ND	ND	ND	14	0.33
Dichloromethane	ND	ND	ND	ND	50	0.35
2-4 Dichlorophenol	ND	ND	ND	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	ND	ND	ND	ND	100	0.19
Diclofop-methyl	ND	ND	ND	ND	9	0.40
Dimethoate	ND	ND	ND	ND	20	0.06
Diquat	ND	ND	ND	ND	70	1
Diuron	ND	ND	ND	ND	150	0.03
Glyphosate	ND	ND	ND	ND	280	1
Malathion	ND	ND	ND	ND	190	0.02
2-methyl-4chlorophenoxyacetic acid (MCPA)	ND	ND	ND	ND	100	0.12
Metolachlor	ND	ND	ND	ND	50	0.01
Metribuzin	ND	ND	ND	ND	80	0.02
Monochlorobenzene	ND	ND	ND	ND	80	0.30
Paraquat	ND	ND	ND	ND	10	1
Pentachlorophenol	ND	ND	ND	ND	60	0.15
Phorate	ND	ND	ND	ND	2	0.01
Picloram	ND	ND	ND	ND	190	1
Polychlorinated Biphenyls(PCB)	ND	ND	ND	ND	3	0.04
Prometryne	ND	ND	ND	ND	1	0.03
Simazine	ND	ND	ND	ND	10	0.01


Parameter	Results ($\mu\text{g/L}$) Norwich Pitcher St. WTF Nov.27, 2023	Results ($\mu\text{g/L}$) Norwich Main St. WTF Nov.27, 2023	Results ($\mu\text{g/L}$) Otterville WTF + June 10, 2024	Results ($\mu\text{g/L}$) Springford WTF May29, 2023	MAC ($\mu\text{g/L}$)	MDL ($\mu\text{g/L}$)
Terbufos	ND	ND	ND	ND	1	0.01
Tetrachloroethylene	ND	ND	ND	ND	10	0.35
2,3,4,6-Tetrachlorophenol	ND	ND	ND	ND	100	0.20
Triallate	ND	ND	ND	ND	230	0.01
Trichloroethylene	ND	ND	ND	ND	5	0.44
2,4,6-Trichlorophenol	ND	ND	ND	ND	5	0.25
Trifluralin	ND	ND	ND	ND	45	0.02
Vinyl Chloride	ND	ND	ND	ND	1	0.17

APPENDIX 'B': WATER QUANTITY SUMMARY


2025 Average vs Maximum Daily Flow Rates

2025 Daily Flow

2025 Total Production by Well

